
&eej@esented 6 --- ai=!;; 

-eeting, Houston, Tex-q 
Dec. 1-5, 1963 L- 

_ -  _ -  
’ DETERMINATION OF C O M B I l I b  CONDUCTION AND 

Ll 
Lewis Research Center 

National Aeronautics and Space Administration, j 6. 

1 
/ 

ABSTRACT 

A simple method of solution for a group of problems involving the com- 

bined modes of radiation and conduction heat exchange through radiant media. 

is proposed. Considering the radiant exchange factors involved in the equa- 

tions of transfer to be independent of the conduction process replaces the 

integrals in these equations by constants that can be determined either from 

pure radiation solutions available in the literature or by an independent 

solution. 

with exact solutions of the integro-differential equations present in the 

Comparison of appraximate radiation-conduction solutions is made 

literature and agreement is found over a large range of parameters. 

INTRODUCTJON 

Problems involving combined modes of heat transfer lead to the considera- 

tion of nonlinear integro-differential equations, the solution of which is of 

course quite difficult. For even simple cases involving conduction and radia- 

tion of heat between surfaces, few investigations have been carried out. 
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The problem considered here is the determination of the temperature 

distribution in a gray nonisothermal gas with constant thermal conductivity 

and absorption coefficient contained between infinite gray surfaces. 

cifically, the cases of infinite gray parallel plates and infinitely long 

concentric gray cylinders are attacked. The heat transferred between the 

bounding surfaces is also considered. 

Spe- 

The problem of infinite plates described in the preceding paragraph 

has been examined by some authors (1 to 3). 

Grosh (1 and 3) are exact and are formulated in terms of integro-differential 

equations. 

interchange factors, which also leads to integro-differential equations, He 

treats finite plates and includes the effect of flow, but is forced to make 

certain approximations. Both the methods cited are tedious from the stand- 

point of solution of a specific problem, and a reduction in the form of the 

equations involved would be desirable. 

The solutions of Viskanta and 

Einstein (2) attacks the problem through consideration of zone 

In this paper, it is shown how problems of energy transfer by combined 

conduction and radiation in some simple geometries can be formulated in terms 

of differential equations, which can then be soived by a finite-difference 

technique. 

the radiative exchange factors used in the formulation. 

mation, it is shown that, if the optical thickness, radiation-conduction 

parameter, surface-temperature ratio, surface emissivities, and, for concen- 

tric cylinders, the diameter ratio are known, then the temperature distribu- 

tion in the gas and the heat transfer between the surfaces can be readily 

found. The solutions converge quite rapidly because of the absence of 

- 
This removal of the in~egral terms involves an approximation of 

With this approxi- 
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integral terms in the equations, 

ANALYSIS 

Case of Infinite Parallel Plates 

Consider the geometry of infinite parallel gray plates at temperatures 

To and T1, separated by a distance D, and enclosing a gray gas of absorp- 

tion coefficient K and thermal conductivity k. The gas is nonisothermal, 

although the gas properties are considered independent of temperature. 

problem is t o  find the temperature distribution in the gas and the heat 

transferred between the plates. 

The 

A heat balance for a unit time on an isothernd. gas increment of width 

Ax, refractive index 1, and unit area gives 

The fraction FA ax,i 

fraction of the energy emitted by surface A, which is absorbed in a gas 

increment i of width Ax at some time during transit to absorption at 

either surf acet 

appearing in the first two terms is defined as the 

The first two terms in Equation (1) represent, respectively, the rate 

of energy radiated from surfaces 0 an4 1 and absorbed in increment io 

These terms include that energy originally leaving a surface which is 

absorbed elsewhere in the gas and is then reemitted, finally being absorbed 

in increment i. 
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me t h i r d  term represents  the rate of energy conducted i n t o  increment i 

from t h e  adjacent (i - 1) increment. 

The term Cgi i s  included,to account f o r  energy t h a t  o r i g i n a l l y  

leaves a sur face  by conduction, is conducted i n t o  elements o the r  than i, is 

then emitted as r ad ian t  energy by these  elements, and is absorbed i n  increment 

i. It w i l l  cons is t  of contributions frolp elements where the  slope of t e m -  

pe ra tu re  i s  decreasing (d2T/dx2 posit ive),  sinoe only i n  these  elements will i 
r' more energy be conducted i n  than out, Qis excess conduction a c t s  as a 

source of r ad ian t  energy i n  t h e  gas, and some por t ion  of t h i s  rad ian t  energy 

may be absorbed i n  increment i. 

The first  term on the r i g h t  is t he  rate of energy conducted from incre-  

ment i t o  adjacent increment (i + 1). The f i n a l  term is t h e  r ad ia t ion  

emitted from increment i. Because 

t i o n s  from only a por t ion  of t h e  elements and t h e  t o t a l  value of 

usually be small compared t o  t h e  o ther  energy eq ter ing  element 

w i l l ,  i n  general, have contribu- 
C g i  c,, 

i, it will 

henceforth be neglected. 

t r i b u t i o n  were desired,  xgi could be ca r r i ed  forward i n  t h e  following 

s teps :  it could be set equal t o  zero as a first approximation and then solved 

If a somewhat more accura te  f i n a l  temperature d i s -  

f o r  by i t e r a t i o n  on t h e  b a s i s  of t he  r e su l t i ng  temperature d i s t r ibu t ion .  I n  

view of o the r  approximations t o  be made, t h i s  accuracy w a s  not deemed neces- 

sary. 

The f r a c t i o n  FA k,i i s  dependent upon tl?e conduction process, since,  

f o r  a pure r ad ia t ion  problem, a l l  energy absorbed i n  an increment w i l l  be 

reemitted under s teady-s ta te  conditions, while, with simultaneous conduciiuri, 

some por t ion  of t he  absorbed energy w i l l  be conducted from any increment where 
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d2T/dx2 is  negative. Thus, when conduction i s  present,  t h e  f r a c t i o n  of t h e  

r a d i a t i o n  leaving a sur face  and f i n a l l y  reaching a given element w i l l  be .+ 

smaller than i n  t h e  absence of conduction. 

When r ad ia t ion  is  the  prominent mode of heat t r ans fe r ,  however, any 

e r r o r  t h a t  would occur from t h e  assumption t h a t  

t h e  conduction process is  small, 

FA ax,i is independent of 

When conduction predominates, though, l a r g e  

e r r o r s  i n  t h e  r ad ia t ion  contribution may be to le ra ted ,  I n  t h e  following 

argument, therefore,  i t  i s  assumed that is  independent of t h e  con- 

duction process. This l eads  t o  subs t an t i a l  reduction i n  t h e  complexity of 

t h e  equations of t r ans fe r ,  

If sur faces  0 and 1 are at  the  same temperature, Equation (1) 

reduces t o  

Since t h i s  r e l a t i o n  i s  independent of sur face  temperatures if it is 

assumed independent of t he  conduction process, it can be subs t i t u t ed  i n  

Equation (1) t o  g ive  

where t h e  following d e f i n i t i o n s  have been made and subs t i tu ted :  
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This equation defines a nondimensional temperature at the midpoint of the 

gas increment. With the gas increment numbering system i = 1,2, I . ,f, 
Equation (3) will only apply for the range of increment numbers 1 C i < f. 

Following the same method of derivation as for Equation ( 3 )  for gas incre- 

mnts 1 and f gives the boundary equations 

(5 1 
As is shown in the appendix, the exchange factor Fo-ax,i can be 

found for any combination of wall emissivitiee, 40 and €1 and any opti- 

cal thickness T with a derivation simil$r to that in (4) if only the 
- 

exchange factor for black surfaces Fo-ax,i ' 
is 'known. The relation is 

where EA = (1 - EA)/€* and ??o-l is the exchange.-factor for radiation 

between black plates through a gray gas. 

Examination of Equations ( 3 )  to (5) then leads to the conclusion that 

the gas-temperature distribution 

of Equations (3) to 

optical thickness 

of the plates are specified. 

O ( X )  can be found by an iterative solution 

(6) if the conduction-radiation parameter N, the gas 

* 
T, the plate temperature ratio T1, and the emissivities 

All interchange factors may be obtained from 
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ava i l ab le  so lu t ions  of pure r a d i a t i v e  t r a n s f e r  between black sur faces  en- 

closing a gray gas, some of which are tabqen from (5) and p l o t t e d  i n  f i g u r e  1, 

The equations are seen t o  involve no i n t e g r a l  t e k ,  although Fo-m,i was ,  

of course, o r i g i n a l l y  found by some method of so lu t ion  of a problem involving 

i n t e g r a l  equations. 

Heat Transfer Between Surfaces 

Once t h e  $as temperature d i s t r i b u t i o n  is known from t h e  previous Calcu- 

l a t i o n s ,  t he  hea t  t r a n s f e r  between the  sur faces  may be obtained from a hea t  

balance at sur face  0, which y i e lds  

I f  t h e  su r face  temperatures are equal, from P 0 may be found 
€3-0 

EOFO-l = EIF1-O 

I f  it i s  assumed t h a t  F a  i s  independent of t he  conduction process, then 

Equation (8) may be subs t i t u t ed  i n t o  Equation ( 7 )  t o  ob ta in  

-N 

(1 - TY) 
fi: 

po-1 
a(T; - Td;) 

If Equation (sa) is  rederived f o r  t h e  other su r facey ,  t h e  following i s  ob- 

tained: 

so-1 -N 
a(% - e) (1 - TT4) 

The exchange f a c t o r  E,.,F~-, 

f a c t o r  Fo-l through t h e  r e l a t i o n  

can be found from the black surfece e x ~ h p r g e  
V V I  
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where % = rO/rl and Ri = % f [ i  - (1/2) 1AR. 

i s  now defined by 

The o p t i c a l  thickness T~ 

- kLi-1 -To) 

@ 
zC = K (  rl  - ‘ 0 )  , and Nc = t 

Again, as shown i n  (4) ,  t h e  r e l a t i o n  between t h e  gray-plate and black- 

p l a t e  exchange f a c t o r s  i s  
- 

- @O-lEl~cRI. AEi 
- Rg) FO-m,i + 

1 +?0-1(Eo f %El) 

c 

(14) ‘o’o-AR,~ = 

- 
where FO-l 

cylinders enclosing a gray gas of op t i ca l  thickness 

i s  t h e  exchange f a c t o r  f o r  r ad ia t ion  between black concentric 

T~~ 

Heat Transfer Between Concentric Cylinders 

The hea t  t r a n s f e r  between t h e  cy l ind r i ca l  surfaces can be derived i n  a 

manner similar t o  t h a t  f o r  Equation (9), which gives 

or, on t h e  b a s i s  of t h e  de r iva t ive  a t  t h e  ou ter  surface,  

The r e l a t i o n  between t h e  black and gray sur face  exchange f a c t o r s  i s  

as obtained from (4).  
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DISCUSSION AKD IiEsULTS 

The method presented herein depends on the a v a i l a b i l i t y  of rad ian t  ex- 

change f a c t o r s  f o r  t he  spec i f i c  problem being attacked. 

ca lcu la ted  f o r  black surfaces  i n  the  i n f i n i t e  f l a t  p l a t e  and i n f i n i t e l y  long 

concentr ic  cyl inder  geometries from (5) and (4), respect ively,  are shown 

i n  Figure 1. 

of sur face  emiss iv i t ies  may be calculated by t h e  use of t he  appropriate  

Equation ( 6 ) ,  (lo), (14), or (16). 

These fac tors ,  as 

From these  fac tors ,  t he  exchange f a c t o r s  f o r  any combination 

If t h e  f a c t o r s  for a s p e c i f i c  geometry are not ava i lab le  i n  an exact 

solut ion,  which i tself  involves i n t e g r a l  equations, t h e  approximation pre- 

sented by Deissler (6)  may be used. It i s  a modified second-order d i f fus ion  

approximation, w i t h  jump boundary conditions, which y i e lds  very good r e s u l t s  

over a l a r g e  range of o p t i c a l  thickness. 

(4) and ( 5 )  f o r  t h e  geometries analyzed here, 

mation gives  

The range of va l id i ty  is  shown i n  

For f la t  plates ,  t h i s  approxi- 

- 
FO-Ax,X = 37 -k 4 

47 AX[3T(1 - X) + 21 

4 - 
FO-l = 32 + 4 

and f o r  concentr ic  cyl inders  

as derived from diffusion solut ions presented i n  (4)  and (5) following Deissler. 
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D e i s s l e r ' s  method may a l s o  be used t o  compute exchange f a c t o r s  i n  o ther  

geometries. 

Comparison of t h e  r e s u l t s  of t h e  present method i s  made with t h e  exact 

r e s u l t s  of Viskanta and Grosh (1) and (3) and E ins t e in  ( 2 )  and (8) and with 

t h e  approximate so lu t ion  of Konakov ( 7 ) .  The d a t a  from Table I of (1) were 

corrected t o  remove some e r r o r s  i n  t h e  values of N f o r  c e r t a i n  ranges of 

The so lu t ion  with t h e  present method i s  e a s i l y  programmed i n  genera l  form 

f o r  t h e  high speed computer by any of a number of standard methods of solution. 

The curves presented he re in  were computed by t h e  Newton-Raphson method de- 

sc r ibed  f o r  t h i s  type problem by Ness ( 9 ) .  The so lu t ions  converge extremely 

rap id ly  because t h e  matrix of equations has nonzero elements on only t h r e e  

diagonals. Heat-transfer results were computed by f i t t ing a parabola through 

t h e  th ree  computed temperatures near the  w a l l  and by computing t h e  de r iva t ive  

a t  t h e  w a l l .  

hea t  t r a n s f e r  computed by each i s  shown i n  Table I. 

Derivatives a t  each wall were obtained i n  t h i s  manner, and the 

Because t h e  e f f e c t  of r ad ia t ion  i s  exaggerated by t h i s  method as shown i n  

t h e  appendix, t h e  predicted temperatures are always higher than t h e  exact 

solution. It follows t h a t  t h e  der iva t ive  (dp/dX) w i l l  always be smaller than 

t h e  exact so lu t ion  a t  sur face  0, and l a r g e r  at sur face  1. Examination of 

Equations ( 9 )  and (15) will shov tha t ,  a% sur face  1, t h e  predicted hea t  t r a n s -  

fe r  w i l l  t he re fo re  always be higher than t h e  exact so lu t ion ,  because the term 

i s  a l s o  always predicted as too l a r g e  by t h i s  method. A t  sur face  0, EoFo-l 
s ince  t h e  g rad ien t  i s  too small and ~ $ 0 - 1  . too  large, t h e  result ray 5e i n  

er ror  by a p o s i t i v e  o r  negative amount. Use of t h e  l a r g e r  de r iva t ive  w i l l  
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therefore allow conservative prediction for problems in which minimum heat 

transfer is the goal since the actual heat transfer will be less than that 

predicted, while use of the smaller derivative will usually give a more 

accurate result. 

Temperature Distributions 

Figures 2(a) and (b) compare temperature distributions in a gas, as 

calculated by the method of this paper, with those based on solution of the 

integro-differential equations. Comparison is exact for pure conduction 

(N -, 03) and pure radiation (N -, 0) as required, and the widest deviation 

occurs at values of the conduction-radiation parameter N for which the 

temperature profile is intermediate to the limiting curves. As discussed. 

before, the method of solution used in t h i s  paper tends to exaggerate the 

effect of radiative transfer, so that the predicted temperatures axe too 

high. 

For decreasing surface emissivity, accuracy is also decreased. Highly 

reflective walls decrease radiative heat transfer between the surfaces, but 

increase the value of FA-ax,is This effect is exaggerated proportionately 

by the approximation used in the present method. 

Figure 2(c). 

This is illustrated in 

One set of temperature distributions for the concentric cylinder case 

is shown in Figure 3. 

for the case of a heat-generating core transferring energy through a gray 

gas to an outer surface. Temperatures at only fnix p~icts uerc e-czLiiateci in 

the gas, and these, plus the derivative at the core-gas interface, were used 

The exact solutions were obtained by Einstein (8) 
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to define the curve in reference ( 8 ) *  

length to diameter ratio of 5, and the temperature profiles presented were 

at the midpoint of the tube, 

son is made here because no other results are available for combined radia- 

tion and conduction in cylindrical. geometry, 

The cylinder was assumed to have a 

End effects were assumed negligible, Compari- 

Heat-Transfer Results 

Accuracy of the heat-transfer results was generally quite good for the 

parallel-plate case, but results became less accurate for cases where the 

radiative effects strongly affected the temperature distribution. 

occurred for cases involving large gas optical thickness, low surface emis- 

sivity, and a value of the conduction-radiation parameter N such that 

radiation and conduction both contributed significantly to total heat trans- 

fer. 

This 

Comparison of the present results to those obtained by merely summing 

the contribution of pure radiation qrn and pure conduction without 

regard to their interaction shows that the present method gives about the 

same accuracy in comparison with the exact solutions if the smaller of the 

(dT*/dX) values is used, especially at low surface emissivities. 

true except for the limited regions where the approximation breaks down as 

noted previously. 

This is 

The value of the present method is its usefulness for many design cases 

by the prediction of too large a heat-transfer rate, while the simple additive 

method predicts too small a rate for parallel p 1 e l r . e ~ ~  The use sf these two 

simple methods gives upper and lower limits for heat transfer. 
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For concentric cylinders, no solution, except Einstein's (8) for a very 

few cases, exists in the literature. 

cate that the neglect of end effects in (8) may have introduced considerable 

error in the heat-transfer calculations. 

Pure radiation results from (3) indi- 

Figure 4 shows one set of heat-transfer results for the concentric 

cylinders. The present results are seen to be physically reasonable, approach- 

ing the pure radiation solution at small No. 
Both the present method and the simple additive method predict too large 

a heat-transfer rate in this geometry. 

least as accurate and generally more accurate, however, because the derivative 

at either wall will be closer to the exact derivative. The results of Konakov 

The present method will always be at 

(7) are plotted for comparison. The reason is that the present method predicts 

a wall derivative between the exact combined solution and the pure conduction 

solution at surface 0 while the additive method uses the higher pure- 

conduction derivative. 

Other Approximate Solutions 

Konakov (7) presents simple equations for the transfer of heat in the 

geometries studied herein and for the case of concentric spheres. For 

T 5 2, his equations in the nomenclature used herein become 

TN(1 - q) 1 
* =  + Eo + E1 + 1 (1 - Ty4) 

for infinite plates, and 

for infinitely long concentric cylinders. These are from Equations (72) 
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and (92) ,' respect ively,  of reference ( 7 ) .  

Results ca lcu la ted  by Equation (21) are compared i n  Table I t o  exact 

so lu t ions  and are seen t o  vary widely i n  many cases from them. 

For concentr ic  cylinders,  Konakov's equation predic t s  $ E 1 f o r  pure 

r ad ia t ion  between black cyl inders  f o r  all T~ < 2 and a l l  R, which is  

shown t o  be i n  error by up t o  150 percent a t  T~ near 2 and % near 1 by 

t h e  results of (4). 

For these  reasons, Konakov's results should be  used with some discret ion,  

Probstein (10) a l s o  takes  the approach of adding t h e  independent conduc- 

t i o n  and r ad ia t ion  so lu t ions  without regard t o  in te rac t ions  but  uses a 

r ad ia t ion  so lu t ion  s imi l a r  t o  t h a t  of  Deiss ler  (6)  i n  t h a t  an energy jump a t  

t h e  surface-gas i n t e r f a c e  i s  considered. Deissler's so lu t ion  reduces t o  the 

r ad ia t ion  so lu t ion  of (10) f o r  t h e  i n f i n i t e  black plate enclosing a gray-gas 

case, but  is probably more accurate  i n  other  geometries because of ' the  inclu-  

s ion  of second-order terms. 

walls and nongray gases. 

Deiss le r  ( 6 )  a l s o  includes the  effect of gray 

The hea t - t ransfer  results of (10) a r e  q u i t e  similar 

t o  those obtained by the  addi t ion of the  independent r ad ia t ion  and conduction 

solut ions.  

CONCLUDING HEMARKS 

The so lu t ions  of  c e r t a i n  types o f  radiant-exchange problems are available 

i n  t h e  l i t e r a t u r e .  Where these  solut ions are present,  it shoidd be poss ib le  

t o  determine exchange fac tors ,  and then t o  follow a similar ana lys i s  t o  t h a t  

appl ied here  i n  order  t o  f ind  so lu t ions  t o  combined r a d - i ~ t i a ?  szd con&ictloii 

problems i n  similar geometries, 
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Results obtained in this, manner, especially for the transfer of heat 

between surfaces, should be better than those attained by the other approxi- 

mations available, 

ent results obtained for pure conduction and pure radiation. All interactions 

are ignored. Although Einstein (2) showed that the heat transfer calculated 

in this manner differed from the exac'c; solution by less than 10 percent aver 

the range of parameters and for the geometry he studied, it can be shown by 

the results of Table I (3), that greater deviations occur in other ranges, 

especially for low surface emissivities. 

One approximation is simply the addition of the independ- 

The method proposed here predicts a gas temperature gradient which is 

dependent on interaction of conduction and radiation and thus allows fairly 

accurate prediction of the total heat transfer, with the added bonus of a 

predicted temperature distribution in the gas which is not available from the 

other approximations, 

The method discussed a lso  be of value for problems combining radiant 

transfer with convection, and with convection and conduction. It is not 

restricted in a general sense to the type problems discussed herein, but 

could be extended to those involving more complex geometries and less restric- 

tive assumptions on the gas properties, 

to be checked in such cases. 

The accuracy of this method remains 

As is shown by the results presented herein, the method of this paper 

predicts temperatures that are somewhat too  large and similarly predicts too 

high a heat transfer in comparison with an exact solution. 

r e s u l t s  h a t  are conservative for many problems to be computed simply. 

This allows 
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NOTATION 

a r e a  

d i s t ance  between i n f i n i t e  p a r a l l e l  p l a t e s  

emiss iv i ty  r a t i o ,  (1 - EA)/EA 

black body emissive power 

exchange f a c t o r  f o r  black surfaces 

exchange f ac to r ,  f r a c t i o n  of t o t a l  energy emitted at  sur face  A t h a t  

i s  absorbed a t  sur face  B 

exchange f ac to r ,  f r a c t i o n  of t o t a l  energy emitted a t  sur face  A t h a t  

i s  absorbed i n  gas volume increment 

thermal conductivity of t h e  gas 

conduction-radiation parameter, ( k / d ) / o g  f o r  p la tes ,  [k/( rl - ro) ]/UT: 

f o r  cy l inders  

hea t  rat e 

hea t  r a t e  pe r  u n i t  area of surface 

nondimensional radius,  r/rl 

rad ius  

0 

temperature, degrees absolute 

nondimens i onal  temperature, T/To 

nondimensional pos i t i on  between p la tes ,  X = X/D 

pos i t i on  between p l a t e s  

emiss iv i ty  of sur face  

gas absorption coe f f i c i en t  

nondimensional temperature r a t i o ,  (!I? - q)/(l - q) 
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APPENDIX - DERIVATION OF EXICHANGE-FACTOR “ I O N S  

Surface Exchange Fac tors  

Writing heat balances at  sur faces  0 and 1 of the  i n f i n i t e  p l a t e  

geometry and neglecting conduction g ive  

&o = co~%o% + (1 - b)(Q$o-~ + QlT1-0) (All 

Q1 = (1 - c l ) ( g ( - ~ - l  + QlFl-1) 

where p l a t e  1 has been taken a t  zero temperature, and Fm 
t o t a l  energy leaving  sur face  A which is inc ident  on sur face  B with no 

intermediate r e f l e c t i o n s  from e i t h e r  surface. 

essence t h e  exchange f a c t o r  between black sur faces  enclosing a gray gas. 

is  t h e  f r a c t i o n  of 

It i s  seen that  Frn is  i n  

The energy absorbed a t  sur face  1 is  

~ ( F o - l %  + Fi-lQi) 3 ~o%oA$’o-1 

where FO-l 

t h e  paper. 

i s  the  exchange f a c t o r  f o r  gray sur faces  defined i n  the body of 

We can note f u r t h e r  that, f o r  t h i s  geometry, and under the assumption of 

constant gas proper t ies ,  t h e  following r e l a t i o n s  hold: 
- 
FO-1 + F0-0 = 1 

F1-0 + F1-1 = l  
- 

- - 
F1-0 = FO-1 

Combining ( A l )  through (A6) t o  eliminate k, Q1 
- 
F0-0, g ives  

- 
FO-1 “$G-i = 

1 +Fo-JE1 4- Eo) 
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radiation source term for energy conducted to gas elements and 

radiated away 
c 
0 Stefan-Boltzmann constant 

TY Tc 

If 
Subscripts: 

gas optical thickness, KD 

heat-transfer ratio, QA-B/~AA($ - 4) 
for plates, K(rl - ro) for cylinders 

arbitrary surface 

cylindrical case 

gas increment nearest surface 1 

arbitrary gas volume element 

gas 

emitted from other gas increments, absorbed in increment i 

emitted from gas increments, absorbed at surface 

gas increment index 

gas volume increment of width Ax, or nondimensional width AX or 

0 

hR 

surface 0 o r  1 
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Gas Exchange Factors 

A radiant heat balance on isothermal gas increment i, again neglecting 

conduction, gives 
- 

EOFO-AX,~~~OAO = Fo-Lut,iQo +  AX, iQi (AB 1 

For black plates, Equation (2) reduces to 
- 

47 = FO-U,i q-&X,i (A91 

Combining (A8) and (A9) with (Al)~Chrough (A7) to eliminate 

Q1, and % gives 

Fl-&,i, 

"he derivation of similar relations for concentric cylinders is contained 

in (4). 

Overprediction of Gas Temperatures Between Flat Plates 

Pure radiation temperature distributions in gray gases between infinite 

parallel plates are antisymmetrical around the average emissive power of the 

plates when plotted in terms of emissive power. The value of 0 can therefore 

be shown to lie only in the range 0.5 5 0s 0.841. at the point midway between 

the plates (XI 0.5) for the pure radiation solution. Comparison of any pure 

radiation solution in this range with the pure conduction solution then 
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indicates that there will always be a greater or equal amount of sinks than 

sources * in the body of the gas. This occurs because the exact combined 

solution must lie between or above the separate pure-mode solutions. 

contribution, kherefore, to the heat-balance equations by the 

term will be more than compensated by decreases in the exchange factor 

terms by radiation sinks. 

still leaves an overpredicted temperature under the assumptians, 

Any 

source c 
contribution, therefore, c Neglect of the 

* A source for radiation occurs in any increment where the conducted 

energy input exceeds the conducted energy output; (d2T/&) is positive. 

sink occurs where the converse is true. 

A 
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FIGURE LEGENDS 

Figure la. - Exchange factors between black infinite parallel plates. 

Figure lb. - Exchange factors between infinite plate and gas element. 

Figure IC. - Exchame factors between infinitely long concentric black 

v) 

cu 2 
W 

cylinders. 

Figure Id. - Exchange factors between inner black concentric cylinder and 
gas increment: effect of gas optical thickness. Radius ratio, 
~0 = ro/rl = 0.1. 

Figure le. - Exchange factors between inner black ancentric cylinder and 
gas increment: effect of radius ratio. Gas optical thickness, T~ t 2. 

Figure 2a. - Comparison of temperature distributions between flat plates 
and effect of conduction-radiation parameter. z = 1.0, !I$ = 0.5, €1 -1. 

Figure 2b. - Comparison of temperature distributions between flat plates Bnd 
effect of conduction-radiation parameter. T E 1.0, = 0, 10, eo = cl = 1. 

Figure 2c. - Comparison of temperature distributions between flat plates and 
effect of surface emissivity. T = 1, = 0.5, PI = 0.04. 

Figure 3. - Temperature distributions between infinitely long concentric 
cylinders. 

Figure 4. - Heat transfer between infinitely long  concentric cylinders en- 
closing a gray gass 
cO = cl = 1; surface temperature ratio 

radius ratio, % = 0.5; surface emissivities, 
TT = 0.53 optical thickness, 

Tc = 2. 
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Fig.  l a .  Exchange f a c t o r s  between black i n f i n i t e  p a r a l l e l  p l a t e s .  
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Fig.  l a .  Exchange f a c t o r s  between black i n f i n i t e  p a r a l l e l  p l a t e s .  

OPTICAL 
4~ THICKNESS, 

I I 
A 

.-r .6 .e i .21 r) .L n 
W 
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Fig .  lb. Exchange f a c t o r s  between i n f i n i t e  p l a t e  

and gas element .  
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Fig. Id. Exchange factors between inner black con- 
centric cylinder and gas increment: effect 
of gas o tical thickness. 
Ro = r0,& = 0.1. 

Radius r a t i o ,  
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R-Ro POSITION BETWEEN CYLINDERS, - 
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effect 
Fig. le. Exchange factors between inner black con- 

centric cylinder and gas increment: 
of radius ratio. 
TC = 2 .  

Gas optical thickness, 
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- 

POSITION BETWEEN PLATES, X 
Fig. 2a. Comparison of temperature distributions be- 

tween flat plates and effect of Eonduction- 
radiation parameter. T = 1.0, T1 = 0.5, 
EO = tl = 1. 
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POSITION BETWEEN PLATES, X 
Fig. 2b. ComPariSOn of temperature distributions be- 

tween flat plates and effect of $onduction- 
radiation parameter. T = 1.0, T1 = 0.10, 
€ 0  = €1 = 
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POSITION BETWEEN PLATES, X 

Fig. 2c. Comparison of temperature distributions be- 
tween flat plates and effect of surface 

, emissivity. T = 1 T* = 0 . 5 ,  N = 0.04. 1 
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Fig. 3. Temperature distributions between inf in i te ly  long 

- 
concentric cylinders. !Ff = 0.576, T = 1.6. 
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Fig. 4. Heat transfer between infinitely long con- 
centric cylinders enclosing a p a y  gas: 
radius ratio R - 0.5’ surface emissivities, 
€0 = €1 = l;’Te$;ratuhe ratio, Ti = 0.5; 
optical thickness, T~ = 2. 
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